Boundary Value Problems for the Elliptic Sine-Gordon Equation in a Semi-strip
نویسندگان
چکیده
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 × 2 matrix Riemann-Hilbert problem whose “jump matrix” depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function qy at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2× 2 matrix Riemann-Hilbert problem whose “jump matrix” depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h(λ). The determination of the function h remains open.
منابع مشابه
Solution of the Dirichlet boundary value problem for the Sine-Gordon equation
The sine-Gordon equation in light cone coordinates is solved when Dirichlet conditions on the L-shape boundaries of the strip {t ∈ [0, T ]} ∪ {x ∈ [0,∞]} are prescribed in a class of functions that vanish (mod 2π) as x → ∞ at initial time. The method is based on the inverse spectral transform (IST) for the Schrödinger spectral problem on the semi-line x > 0 solved as a Hilbert boundary value pr...
متن کاملGeneralized solution of Sine-Gordon equation
In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.
متن کاملD-bar Problems and the Solution of the Sine-gordon Equation in Time-dependent Convex Domains
We solve a class of initial boundary value problems posed in a time-dependent convex domain for the sine-Gordon equation and for its linearized version. We give an explicit integral representation of the solution by using the Fokas transform method; this representation, which has an explicit exponential x and t dependence, is obtained by solving a d-bar problem in the complex plane. This d-bar ...
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملExistence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Nonlinear Science
دوره 23 شماره
صفحات -
تاریخ انتشار 2013